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CIOSED COLLISION PATHS IN A PLANE CIRCULAR
RESTRICTED THREE-BODY PROBLEM

E
e

GeAKrasinskiy

The paths of double collision with a greater mass in the
plane circular restricted three-body problem are studied.
The existence of certain types of paths both symmetric and
asymmetric with respect to the x-axis is shown by the small~
parameter method. The method of constructing these paths

is given.

In this paper, we study the paths of double collision with a large body in
the two-dimensional circular restricted three-body problem. These paths are of
importance for astronautics, as orbits along which flights around the moon and
return to the earth are possible utilizing only the gravitational forces of both
earth and moon. Mathematically, the problem reduces to solving a system of
equations of the two-dimensional circular restricted problem

d%x  2dy _ U
e A X T e
dy | 2dx U (1)

T r g T Y=gy

where U = — l-up + a , with boundary conditions

Jx+ P v Sxrw - 1P+
coinciding with the position of greater masses

x(O):x (T):_—P') (2)
y0)=y(x)=0.

Since, in the solution being sought, the right-hand side of eq.(1) becomes
infinite, the Levi-Civita regularizing variables are employed.

The solution of the boundary-value problem [egs.(1), (2)] is sought in the
form of power series of the small parameter p. For p = O, the solution of the
corresponding two-body problem depends on one arbitrary parameter w (longitude
of perihelion), as a consequence of which the construction of the successive
approximations encounters the same difficulty as in the theory of periodic solu~
tions, namely, the vanishing of some determinant. For this reason the solution
of the problem (1), (2) will not be valid for all values of w but only for those
that satisfy a certain equation. Having constructed series formally satisfying

3% Numbers given in the margin indicate pagination in the original foreign text.
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eqs.(l) , (2), we can easily show their convergence by methods analogous to those
used in the theory of periodic solutions.

1. Iimiting Cagse: p =0

Iet us change, in egs.(1l), (2), to Levi-Civita regularizing variables by
means of the formulas (Wintner, 1941):

x~4-p=p*—q*, y=2pq, dt=4(p*=q%ds.

With the new variables, the equations of motion will have the form /155

N . U
P—8(p*+q*) §=G

G+8(p' g7 p= 32, (3)
where
U==41{p* 2[1‘2___ 2 __ 2 {p2~+g?)? l—p o —lls
(PP=-¢% 7 m(p g% -+ ] p2+<72+\/1—-2(p2-q'-')+(p"+¢2)2 2
. . i/7.22 ] _ _h = s
Here we must stipulate that the equality #(8° + &) - U = ~3- = 0 be satis-

fied in solving the system (3). The boundary conditions with the new variables
read as follows:

P(0)=p(c)=¢q(0)=¢ () =0, (L)
where 0 is the fly-around time. Equation (3) can be written in Hamiltonian form
. OH . oH
P= 57)' » g = '(;a‘ 3
. oH < 0H

P=—, Q0=—%", (5)

where

H= (P~ Q) +2{gP—pQ) ('~ ") -4 (p*+¢") X

(1~ 1) i __c
% [P2+q2 VTSI =) ) 2]' (6)

We will denote p, g, P, Q respectively by x1, Xz, Xa, Xz, and write eq.(5)

as
xy=X;(x1, x5 X3, x4, €, 1) j=1,2,3, 4, (7)
x;(0) = x; (6) == x, (0) = x, () =0. (8)

let us find the solution of the problem (3) and (4) for p = 0. Here,
egs.(3), for p = 0, have the form

2



p—8(p*—~ ¢% ¢ =12(p*~+¢*)’p —4cp, }

G—+8(p*—+¢%) p =12(p*—+¢**q — 4cq. (9)
This system has two integrals
1, .
5 (P =2 (PP g7 — 2 (PP ¢) + 4+ , } (10)
pg—qp—2(p*--¢*)=b.
Let us introduce the polar coordinates
p=psinb, g==pcos?, (11)
Substituting eqg.(11) into eq.(10), we obtain
6 — 20t =, (12)
02 —- 022 =458 — 4cp® -8 - (13)
. S%nce p =0 for s =0, it follows from eq.(12) that b = O. Substituting
8 = 2p° into eq.(lB) will give
P
‘-)[ \’-—4cp2+8+/1
., . _ 2 h .
Let us substitute the variables p = V-5 + o sin E /156
1 A\ A
s—u/7<2-‘_—4‘) cos £ E = E
- VB A Vi—sinz & V4c
0
but ¢ = —%—, where a is the semimajor axis; consequently,
1 A .
9=V—c—(2—i—:—{:—>sm2¢ms (14)
where n is the mean diurnal motion.
Making use of the equality 6 = 20%, we find ©
8+h in4
p=271 (4as—’———-’“n-°"‘)+m. (15)

Thus, the solution of the boundary-value problem (3) and (L), for b = O,
depends on two arbitrary constants w and h. For h = O, we obtain the solutlon
of the two-body problem satisfying the boundary condition (L)

We see from eq.(1l4) that the fly-around time o is comnected to the semi-

major axis a by the formula ¢ = -%1— k, where k is some integer.



2. Determination of First-Order Perturbations

To determine the perturbations we must find the general solution of a set
of homogeneous variational equations

8p — 8rdg — 16 (pBp ~+ ¢3q) (g -+ 3pr) — (12r* — 4c) 8p =0, }
8 —+8rtp — 16 (pdp - g3q) (—p —+3q7) — (127* — dc) g =0, (16)

where r = p° + ¢, p, g are calculated on the basis of egs.(11), (14), (15) for
h = 0. The system (16) has two trivial solutions

op; =g, } (16)
3q1=—p,
F‘P2=ﬁr }

Differentiating p and g with respect to h and making use of egs.(11), (14),
(15), we obtain

%=%%sin6.‘n—p cose-g%=—%i sin 2ans sin (—;——l—-ﬂ))—i——\;%—a— ¢ sin 2answs (—;—-;-m> ,
where
¢ = 4qs — Snfans
Analogously,
% __ V2a

SE= 16 (g —tp).

Consequently, the third particular solution of the system (13) will be

8y = p--1q, } (
18)
83 =q — tp.

By a direct check we can convince ourselves that the fourth solution is /157

~ 2 .
Py = q cot 2ans+—n—ps—5’.§_ ,
8q, = —pcot Qans—i—-%- q‘s—*—,l’n'_ . (19)

It is easy to demonstrate that these solutions are linearly independent.
Let us seek the solution of the problem (7), (8) in the form of a power series

of
x = Z}) xps, (20)

Iet us also consider the Jacobi constant ¢ on the r.h.s. of egs.(7), which
can be determined in the form of a series

L



©
R 1w
C==Co—i— ;c,-p.‘, Co=——=—1r k=1, 2, 3...
i=1

Let us set w = 0. The functions x:°’ =p, x:°) are calculated, as shown

above, from egs.(11l), (14), (15), while the functions xéo), xio), as follows

from eqg.(5), are obtained over the formulas

xP = P==xD—2x0r, xV=Q=xP~2x{r. (21)

The functions xﬁi) (1 > 0) satisfy the system of linear differential
equations

4
dx*®
b 3 ) (4 —
ds E:Pﬁxﬁ)“‘“ﬂj) (XD XY, ey ) gL, (22)
a=:1

where
o f?f\’j (x(lo) e x&o), Cye 0)
pJu - 0,1'(0) ’
i (23)
P =9=0, ¢3z=—4x, ¢, =—4x{)

= »aXJ(X(]_O) LI X(40) ’ CO, IJJ)

in particular, F§*’ . The functions x§*’ should

Ol M=0
also satisfy the boundary conditions
X0(0) = {2 (0) = 509 (6) = x19 (5) ==0. (24)

Knowing the solution of the variational system (16), we easily find all
linearly independent solutions of the homogeneous system

dy; %
ds ;\é‘p.iayu' (25)
a==]
In this case,
Yii=3%p;, Yu=23q,,
Y3 = 0p; — 20q,r = 2qdr;, (26)

Yus =8¢, —+ 28p,r—- 2plr,.

The last two expresslons are obtained by variation of eq.(21).

Let us now find Xﬁl). For this, we must find the particular solution of
the system (22) for i = 1. Using the variational method of arbitrary parameters,
we will obtain the particular solution in the form

4
X =— ::31 a..y,“., (27)
To find @4, we derived the system /158
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4
El d,-y,,"'—:FS,”-b-clcp,‘ k=1v 2, 3, 4,

(28)
where

V=0, FP=0,

Fgl) — —16x§+ 8.\'1 - 8'.}\‘] - 8"24\‘1

r3 rg !

: 2 —8rxy —- 872

Fil)"—-_ IGX; — 8. - 8rxy - 8rx,y

ry "2
let
2= Ysh 2 Tmlen T =i F6a = Yae (29)

It is known that, for canonical systems, the quantities z,; form the matrix

of the solutions for the system of equations conjugate to the system (25)
(Malkin, 1956), i.e., for equations

dz

¢
dsj = EP”’Z.- (30)

a==1

The basic property of conjugate systems is that the expression Ay =
=A%fzk1y§3 does not depend on time (Malkin, 1956). For canonical equations,

this property is equivalent to the time-invariance of the lagrange brackets Ay,
(Subbotin, 1937). It is obvious from the determination that Ayy; = - 4;;. Iet
us then multiply eq.(28) by zxs; and carry out the sumation for k from 1 to 4.

The obtained system will be equivalent to the initial system, but with constant
coefficients for o;:

4

d‘iAj.' =fj, (31)

—

where

4
X
sy= 1:2:1 (F=c19,) 240

Since the coefficients A;y; are independent of time, we will set s = O in
calculating them.

Making use of egs.(11), (14), (15), it is easy to calculate the matrix of
the system (28) for s = 0. This yields the followlng matrix:

" 0, V8 sin w, 0, V2a cosw
i 0, V8 cosw, 0, —yV2asinow
Ii \/gcosw, 0, V8 sin 0, 0

— V8 sin o, 0, V8 cos o, 0



Having formed the matrix ||A;s]|, we obtain

[

o 0 0 —4va|
‘ 6 08 0
UA/.-H— 0 —8 0 0 . (32)
l4v2 0 0 0
Thus, we have the following system: /159

—4 \/E"M: Xaoffs— X1/
8&3-:;\'71](3"“'-*2](4,
— 8ag == (X, =i~ txy) fy—+(x,—tx)) fo

(33)

. 2 cot 2 ¢
4Vas, = (x, cot 2ans—-i——’-; X8 -——":—-)fa-t—(-—— x; cot 2ans+T xgs—i--—":—-)ﬁ.

Consequently,

4
x= > (a‘.—i—a(..”) T

t==1

where o; are calculated by egs.(33) and a.(il) are arbitrary constants. We will

arrange these constants such that the equalities

x(lx) (0) = x(zl) 0)= x(ll) ()= xfz‘) () =0. (34)

are satisfied.

If, in eq.(33), we take the integration limits from O to s, then, for s =
=0, all oy = O. Having set s = O, we have

x{0(0) =a V/8 sin 0 -+ a y/2acos 0 =0,

xP(0)=a) Y8 cos o — a® V2asinw=0.
Hence,
a)=ad =0
let us set s =0
_az(a)VB_sin(m-i—--—%z—k)——a‘;(c)VQ_acos(w—f——zl‘;k):o,
—-az(a)\/gcos(w—i—%k)-a—a‘(o) \/Zsin(w-l——zz;—k)=0 (35)
or @z(0) = ,(c) = 0. In this case a&l) s 3.531) remain indeterminate.

Thus, for the system of equations (22) to have a solution satisfying the
conditions (24) for i = 1, it is necessary and sufficient that the two following
conditions be satisfied:



g

Py (o, k)= [x, /) — x, /] ds = [ —16x?+§;§+*&1—:*ﬁ_401x1} xyels —
0

0 Ty

¢ a
8y ~—8rxy — 8r2x. 1
—-[ [16x2+r—23+—r—2—2——4c X ‘x]ds=16j X, X,r (-13-—-1) ds=20, (36)
0 "2

3 12
0 2 _‘
g

Py (o, ) :J. [(x, = 8x,) )+ (%, —tx)) [ ds =

0

2 (A? -—x%) —2r2

- , .
={ar [4(x§—xf)—i———i— . ——Cl}ds-i—IGJ. x,xzrt-<-r1—3--—-1>ds=0. (37)
0 2

Iy "2

In these equations, let us set h = 0 and return to the variables x, y, t.
We obtain

fy<713-——1)dt=o, (38)
b 2
clt—i—i‘ [4,\'— r—zz—g(—r-i—g-——‘\—)] c{s——2£y<-rlg--— 1)1’(1{:0. (291_)6_0_

From €q.(38) we find w; substituting this value into eq.(39) we obtain the
value of c¢i, which is the correction to Jacobi's constant.

3. Construction of the Formal Solution

On fulfilling the conditions (38), (39) the solution of egs.(22), for i =
= 1, which satisfies the conditions (2,) depends on two arbitrary constants

agl), aél), which remain indeterminate. These arbitrary constants are deter-
mined from the conditions of solvability of the boundary-value problem for
equations of the second approximation. The value of cz is determined simul-
taneously. The arbitrary constants arising in this case are determined from the
conditions of solvability of the boundary-value problem for equations of the
third approximation, and so on. We will show in greater detail how this is done.
The following transformations are completely analogous to those used in the
theory of periodic solutions (Malkin, 1956). Let us assume that we determined
all functions x;*’(s = 1 ... L) up to the k-th order inclusive, that they satis-
fy egs.(22) and the boundary conditions (24), and that we had determined all

constants ¢;, 1 = 1, ..., ko

Let us then enumerate the solution of variational equations, such that

ox . oxy

Y1 = awd s Toz = —5p = In this case, yy1(0) = YJl(O) = YJa(O) = YJE(G) =

)

=0(3j=1, 2). The functions xﬁi will have the form



) — g0y e gli e
P =dy ; -+-ady - 2, (40)

where §§i) is the particular solution satisfying the boundary conditions, while
a&i), aéi) are certain constants. The quantities a&i), aéi) will be considered
as already determined for i =1 ... k - 1, while al¥) | at®) are still to be de-
termined from the solvability conditions of the boundary-value problem for equa-

tions of the (k + 1)~th approximation. The functions F**') have the following
structure:

1 2 & ,

X

k f— -

Fren=y 2 2 (Geais) (<095, 5w, v
gy o

9

[ oF) o9
i IV, (k) (k-1
+§§[( ) e, (2) ] o, et R,

J=1 a=l

(41)

where the brackets denote that the derivatives are taken for values of the
parameters h = 0, w = w¥ for p = 0, and where w¥, c; satisfy egs.(38) and (39).

Here, ng+1) are known functions not depending on agk), ck+1 » lLet us transform

these expressions

Flk+1) —

M)

4 2 4
02X, oFW 0%
(1 (k d e k k-l
‘_’; ( ox0, )xa)ysjaj)._;— E ‘E [( o L (M > yajaf;')+R(.i+ ),

1 a, =1 J=1 a=1 @

.
Il

We will denote the parameters w, h by hi, hg respectively; then yg, =
oxg

= et (§ =1, 2), and F¥*') 4ill take the form
B

2 4 1)

) - P d (F( -+ 9 ) 1

(k1) Pz (1) e 28~ 118 ) () g RUEHD)

£ E E [011,- Xa T ok; 19 R, (42)
J=1 a, 3=1

For k > 1, F**2) are linear relative to agk) but for k = 1 there will

also be quadratic terms since the constants aﬁk) enter xél)

8=1

4 2 2
. 7 (7 o (F, +
) — 9Psa . (1)) 9Psa Ly O Fs
g 2“;,?;‘, ahy Juil4s +§[§ ahy X3 an, ]“9)”‘R§2’- (43)
Let us now calculate the expression /161
K(”k-H): -1‘ 2 (Fék+l',l — Ck+x?a+R(k+”) zb"ds (n=1, 2), (L)
0

where zj1, Zj2 are solutions of the conjugate system corresponding to the solu-
tions of yj1, ys= of the variational system. In the same manner as used in

9



Section 2 for k = 0, it is easy to show that equating the quantities K{*** to
zero is a necessary and sufficient condition for the solvability of our boundary-
value problem for equations of the (k + 1)-th approximation. We note that x%"
satisfy the equations
deld) :
P
= 2P Py, (45)

a=z)

et us then differentiate both sides with respect to hy

(1 % .
( o ) E P aA( : OPp X0 (AP eitg)
bx Gh; h; Oh; . (L6)

Using this equality, we can rewrite the equality ng+l) = 0 in the follow-
ing manner:

Aua(xk) -+ Aaf - ACrpy =B,
k
Aya) - Agal) —+ Aylh o =BY, (47)
where
ENE ). L
A = Y 2 4 —
Amn =] 2| S‘ /,,,, T ok, 1% ds= J E ds ( ah,,,) EP;,, zg,d
0 =1 | a=1; 0 p=1 a=1

If we integrate by parts and take into account that zg, satisfy the conju-
gate system of equations, we obtain

¢ t)x'g]) ()zﬁ,I
' JE 0/1,,,— ds +zp‘{a i ds=

0 B=1 =1
dz
(7 S B
— () ) W
{ohm (E X5 Zan E *s" ok, }

but 1522 (0) = =82 (o) = %512 (0) = x5 (0) = 0, 2,(0) = zg,(0) =0 (B = 3, &)

ol
at any values of the parameters hi, hz. Consequently, gif(O) B azg;(c)
. m m

0t
V X ZBu

1

¢

e
Ld Oh
=1

m

"I N

K

=0B =3, 4bm n=1, 2. Therefore,

4

E"g) 0/1,,,/ =0,

B=1

0 5: o
A —_— (1)
mn 0k, ( xﬁ ZB”) o

On the other hand, we have

10



4 4
d
= Ex“,‘)zﬁn = 2 (PaaX == FV ¢ 95) z,,

Ex‘ Fpﬁz?n_ﬁ (F—-c9y) 2

=1 f=1 =1 =1
and thus also /162
€ 4
Q (1) 0P, (A hy)
mn—/—'{. F,ﬂ -i"C]cP Zg”————-—h
" E ? ’ (48)
The quantities Ais and Aps are easily calculated directly
0
Ap= [ —4x, 50 "1 o'wjds— [—dx,x, 4+ dx,x,)ds =0, (L49)

X dxy™ - 4
Aqs —J‘ [- —4x, 5 J i —4x, Wf‘! ds =[ [, (3~ txy) ~ 4oy (x, — )] ds == —4 j. rds = —n=. (50)
0 0

To egs.(47) we must add still another equation stipulating that the equali-
ty H = O be satisfied in the solution in question. Since H retains a constant
value in the solution, we will set s = O. This yields

T [RO) 530 =4 (1 —w).
Iet us write out the terms for p*
x9(0) X, (0) ~- 2{0x, (0) = B
where Bs*’ depends only on X €12 (0), i < k.

Substituting here the expression for x(dk)

o [9,(0) %, (0) s, (0) 2, (0)] =+ i [9,, (0) %

, we obtain
1(0) =+ 34, (0) %, (0)] = B

The coefficient for ai¥’ is equal to %5(0) % (0) ~ %.(0) %5(0) = 0, and

for al¥) it is equal to %, (0)° + %(0)° = 8.

Finally, we have a system of three linear equations with three unknowns

0P, iy . 0P ok
Goa - ap =B,
()Pz (k) Y 0P2 (k I k
Gatalfan S o — v, =B, (51)
8al =B,
P, . .
If w is the simple root of the

11



equation P; (w, 0) = O, then this determinant is nonzero.

It remains to examine the case k = 1 when equations kgz) = 0 contain terms

quadratic with regard to aﬁl). These terms will enter the expressions for k&z)
in the following form:

-3 ki
P,
. == il
A" = E : Ajmna(.fl')a(r}l)s Ajmn _J‘ 2" dn‘ " YamZpu.
J
0 a, 3=}

7, m=1

However, it is easy to demonstrate that Ayjn, = O. For this, we must per-
form the same calculations as for the coefficients Ap, and take into account
that yg» satisfy the variational equations which are homogeneous, as a conse-

g g
0 = constlO = 0. The linear part of the

quence of which Aypn = Bi CZ>mezBm)
3

equations, for k = 1, coincides with the linear part of egs.(51) for k > 1.

Thus, the quantities al¥), al®) | c..1 satisfy a linear system of equations

whose homogeneous part does not depend on the number k and has a nonzero deter-
minant.

Thus, having used the above method we obtained series satisfying eq.(7) and
the boundary conditions (8), the coefficients of these series being determined
uniquely. If we prove the existence of the solution of the problem (7), (8),
the convergence of the obtained series will also be proved.

L. Proof of the Existence of a Solution to Problem (7), (8) /163

Iet x; = x3(s, Y1, Yz, Yas Yas C, W) be the general solution of the system
of equations (7) such that

xj(ol T Y20 T T4 C P‘)::TJ" (52)

Let us seek the particular solution satisfying the boundary conditions (8).
Having substituted s = 0, we immediately find that vyi = yz = O.

For s = 0, we obtain the following system of equations:

X3 (0) Or O» Tar Ter © 9)20,

Xg (G) 0, 0, Tar Tar ©C, P‘):O. (53)

Iet us stipulate that the equality H = O must be satisfied in the solution.
This yields still another equation

H(Ya, T4y €y P):‘O’ (511')

For p = 0, the problem has a solution depending on two arbitrary constants
w and h; thus, for u = 0O,

12



X, (Gr O, Or Ygr ‘{2, Co» O)E

0
Xy (0, 0; O, Tg9 ‘{2, Cpr O)EO. (55)

And, in consequence of this,

0x1(a)| __dxp(9)}  __ .
o4 !P=0— 915 lu=o=0’ /=1, 2. (56)
In this case, co = ﬂsﬁz k=0,1, 2, +o. . Equation H=0, for p = 0, will
K

take the form

A - (57)

Iet us demonstrate that, for sufficiently small values of u, egs.(53), (54)
when fulfilling certain conditions will determine the functions vz, Ya, C ana-
lytic with respect to w. Iet By = vz - yéo), Bs = Ygq - Yio), Cl] = C — Cpe
Then, the equations x;(0) = xz(0) = 0 can be represented in the form

%16 0,0, 0 T € 8y =52 U)oy =+-( 22t Uy) By (B - U 0 (B U,
x2(9, 0, 0, 75 74 ¢, P‘)z(g%“‘ Vx) .31‘*“(3%:"“ Vz> 52"‘(%4‘ Va) C:"“(%—" V4) ey (s8)

where uy, Uz, Uz, Ug, V1, Va, Va, Vg are analytic functions of B;, Bz, c, b
which vanish for p = By = Bz = ¢; = 0O; the derivatives are calculated for p =
=0, ¢ = Coe

We will divide egs.(58) by u and make p tend to zero. Assuming v =

= 1im -2~ and taking into account eq.(56), we obtain

o
. ___0x (a) d,x (o)
q’l (750)’ TE{O)’ V) - (170 p=0 ]a‘U' =0 — ( )
_ 9xs (o) dxs (a) 59
(D2 (TgiO)' Yl‘o}’ v) - (230 w=0 —d_l-'-—‘ p=0 v

To these equations we add
O, =+ —8=h=0.
P(q)l, q’z: ‘I’s)

P(Y3, Y2, V)
(54) actually determine, for small p, the functions Ys, Ys, ¢ analytic with re-

If va, Y2, V satisfy these equations and if # 0, then egs.(53),

spect to w. In this case, va(0) = v3, v4(0) = v§%, —%ﬁ- o T Ve It remains
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to prove the equivalence of the obtained conditions with the previously derived
conditions (36), (37). We note that x(s) and xg(s) satisfy egs.(7). Let /16L
us then differentiate these equations with respect to u, for p = O,

4
d 9% X5 ox; W | ( a) ;Eﬁi)
ds op ”=°——§ de; O u=0+Fj I,u=0 Fr= op /J° (60)

+=0

Furthermore, from eq.(52), if we differentiate with respect to w, we obtain

PR (1}
(/Aj)
op

=0.

p=0

Consequently, it is necessary to find the particular solution of egs.(60)
with zero initial data. As was shown, such a solution has the form

0.1‘] (S)

o

_ 1/ 2 xg W) )
o E\xzco{, 20ns~+——n—x,s-——n— t)j (szj —x1F )ds+
0

s
1, 2, xy 7 r 2
+4—~\/;A2 6( {[xz cot Qans—i—-n— X5 — —’—;‘"— tJ FO—+ L——x, cot 2ans -+ XS ﬂ"ll t] F(‘l)} ds -+

? .
1 _ _ .
+ g (X -ixy) J (2 FP =%, F ] dx — :}J‘ [(x==tx,) F = (x, — 2x,) F ] ds
0 0
. Oxp . Oxg
and the analogous expression for S « The expressions for =M and
U=0 M=0
234 are not needed. Setting s = 0, after easy calculations, we have
H=0
03&‘(0) llu=o = -‘%—2— [cosa——7sina} [} —t—v%— I;sina,
0, vZ . . 1 (61)
. 02p.a !p=o=-4—_[—5m°'"_'c°°s o] 11""";,?‘[2003%
where
@ = %:i. k—w,
(62)

5L =f [sz:(;])—szy)] dx, 12=J [(xx’*—l‘x)an—"‘(Xz- txl) F;n] dx,
0

0

o)
The quantities -——}%(i)- are calculated directly:
c

dx; (o) V. dxy () 2
Jo a0 & SME g = g teesa

Equations (59) are written in the form

2 . % . : i
‘D1=—-\/TZ-'Wsma+—:—- (COSa‘i—TSlna)[;“‘NVI;-:a‘]g =0,



cosa

vE§

% 2 .
D =— —zz—':vcosa—i—'—‘/zz—(—sma-f—-'tcos @) [+

12 =0,

Let us multiply the first equation by cos @, the second by sin @ and then
subtract one from the other. This yields

.
2 =o. (63)

Having multiplied the first by sin @, the second by cos @, and having /165
added both, we have

__.-\/—;2-—..»1—{— <], —+ 7 12=71§—-(—'=v+12)=0. (64)

Calculating the value of I, and I and comparing with egs.(36), (37), we
note that

5[5 (e, B), 30 (0, B)]= Py (0,.h),
L,[x3{0, k), 10 (v, B)]—v="P,(u, h, V).

It remains to calculate D&, 82p D) . Using the equalities (63),
(o) (o)
D(Yz""s Yo 's V)

(64), we have

Dby, Py Py) __ D (P, P9 Py) D(P1 Py, @) D(w hv)
D (1 M40, v) T D (P Py, o) | D{w, A V) D( 1, 1(0), v) !

vZ . i
l ——2—<:osat—i————2 T Sin &,. S———-—lia, 0

) 4 4 V8 )
D (D g, Oy _ _ .
PP P 0. — V2 . V2 cosa =g
D (Py, Py, ¥3) — ;- sina—~——Tcosa, 75 0 8
! 0, 0, 1
0P, 0P !
! dw ' ol ! 0
Dy Py ®3) 1 9p, 0P, =25
Dl |G G~
| o, i, O
D(w, Ay V) 1 o 1 2
0 .0 - (0) (0) ' Va — o’
D(Ys' T v) B_M } — V2a 2anscosa, — ®  sina - 2ans, 0
D (w, &, ¥) | 8V2
‘ Va
V2a 2ane sina, — avs cosa + 2ans, 0
0 1
Hence,
D (q)lv 40, 3) - = '—(’PI (0) 0) ]
D (x5 1% v) 4a? L w—w'%o
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Thus, the conditions (38), (39), which are necessary and sufficient for
constructing the formal series, are at the same time necessary and sufficient

conditions for the existence of the solution to the problem.

Since the coefficients of the formal series are determined uniquely, it

follows that these series converge.

5. Investigation of the Fundamental Equation (38)

Iet us examine the fundamental equation (38)

J.Ty(l ———%-) dt =0.

0 "2
This equation can be rewritten in the following form:

1= [r@sin(e+0{1— L ) dt=0,

V{1 r2{t) — 2r () cos (w +£)]3
where

r(ty=a(l—cos k), f=§——:n—-§

, =2k k=1, 2, 3.
n

/166

It is obvious that r(t) is symmetric with respect to the middle of the in-
terval [0, T]. If we select w
T

\ 5

Ly such that [ sin (v + t)dt = 0,

| then the function cos (w + t)

will also be symmetric with re-

g E I
W=l 3 w=-3 spect to the point ——. It fol-

lows that, for such values of w,

9//////’7\\\
' | I(w) = 0. The generating solu-

\\\‘_/’////’//\\\\\\\\~—’/// z tion corresponding to these
values will be symmetric with

respect to the x-axis.

Thus, we have two trivial

T T
roots w; = - - Wy =T -~ — -
Fig.l Symmetric Orbits. The corresponding path is plotted
in Fig.l.

The paths were obtained by Levi-Civita (1904) by a different method.

It is easy to prove the existence of solutions, asymmetric with respect to

16



the x-axis. In fact, let T = —%E— k be small; in this case a will also be

small. It is obvious that the curve x = r(t) cos (w + t), y(t) = =r(t) sin (v +
+ 1) lies entirely within the angle made by tangents to this curve if t = 0 and

t=1T= —%E— k. The osculating point of the slope of these tangents, for t =0

I

and t = T, is ~tan ® and -tan (® + T), respectively. We will set w = O. Then,
for sufficiently small values of T, the curve x = r(t) cos (w + t), y = -r(t)
sin (W + t) lies entirely within the lower half-plane within a circle of unit
radius with a center at (1, 0). Consequently, I(0) < 0. Having set w = 7/2, we
find that the corresponding curve also lies within the lower half-plane but out-

side the indicated circle, i.e., I(—g-) > 0.

£

J

. -— Zz
z
[}
Fig.2 Orbits of the Second Kind. Fig.3 Orbits of the Third Kind.
The broken line gives the sym-
metric orbit and the solid line,
the orbit of the third kind.
Thus there exists a root of the equation I(w) = O located in the in~- /167

terval from O to —g—; since eq.(3) does not change when replacing y by -y, it
follows that, on the curve symmetric to that obtained with respect to the x-axis,

I(w) will also be equal to zero. Figure 2 gives an example of the corresponding
paths.

Finally, we can prove the existence of still another, more interesting,

type of solution. let T = —%E- k and k 2 2, a > 0.5. Equation I(w) = O can
17



then be rewritten as

[o)=-22L)_—o,

where

Since a > 0.5, a change of w will cause the function &w) to become infinite for
certain values of w. Consequently, between two such successive values the

function &(w) has at least one minimum, i.e., I(w) = O. Generally speaking, the
corresponding curves, for k > 1, are not symmetric (Fig.3). In fact, if a = 0.5
from above, it is obvious that the two successive values of wy, and wgz, for which
Hw) = @, tend to a common limit. This limit is determined from the conditions:

r(t, w) =0, rz(t, w) =0, a = 0.5 and is equal to - —%—. Since the root of the
equation I(w) = O lies between w; and Wz, then this root also tends to - —g— as

a = 0.5; thus, for k # 1, it does not equal the roots corresponding to the sym-
metric solutions.

In conclusion I wish to thank G.A.Merman, under whose supervision this
paper was written.
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